F.Dassi

Department of Mathematics and Applications University of Milano - Bicocca

a joint work with

L. Beirão da Veiga, A. Russo and G. Vacca

Kick off meeting - NEMESIS Montpelier - France June 19th - 21th 2024

- standard Finite Element do not have it!
- pressure-robust method *only* in a weak sense, for instance N. Ahmed *et al.* (2018).

Dep.	Math.	and	App.
------	-------	-----	------

Divergence-free condition

- standard Finite Element do not have it!
- pressure-robust method *only* in a weak sense, for instance N. Ahmed *et al.* (2018).

$$\begin{split} ||
abla (oldsymbol{u} - oldsymbol{u}_h) ||_{L^2(\Omega)} &\lesssim \inf_{oldsymbol{w}_h \in oldsymbol{V}_h} ||
abla (oldsymbol{u} - oldsymbol{w}_h) ||_{L^2(\Omega)} + \ &rac{1}{
u} \inf_{q_h \in oldsymbol{C}_h} ||
u - q_h ||_{L^2(\Omega)} \end{split}$$

F.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	3/43	

What is the Virtual Element Method (VEM)?

A generalization of the Finite Element Method introduced in 2013

- general polygonal and polyhedral meshes (also non convex)
- additional interesting features and properties

"Basic principles of virtual element method" L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo (2013)

F.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	5/43	

What is the Virtual Element Method (VEM)?

A generalization of the Finite Element Method introduced in 2013

- general polygonal and polyhedral meshes (also non convex)
- additional interesting features and properties

"Basic principles of virtual element method" L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo (2013)

F.Dassi et al.	Dep. Math. and App.
Div-Free VEM 3d	5/43

Stokes and Navier-Stokes problems

F.Dassi et al.		Dep. Math. and Ap
Div-Free VEM 3d	7/43	

Talk outline

1 Problem definition

2 VEM spaces

- Velocity field virtual space
- Pressure virtual space
- 3 Problem discretization
- 4 Numerical examples

5 Conclusions

Problem definition

Stokes problem - continuous formulation

We search for a velocity field \boldsymbol{u} and pressure p, such that

$$\begin{cases} -\nu \, \Delta \boldsymbol{u} - \nabla \boldsymbol{p} &= \mathbf{f} \quad \text{in } \Omega \\ \text{div}(\boldsymbol{u}) &= 0 \quad \text{in } \Omega \\ \boldsymbol{u} &= 0 \quad \text{on } \partial \Omega \end{cases}$$

where

• Ω be a simply connected domain in \mathbb{R}^2

•
$$\mathbf{f} \in [L^2(\Omega)]^2$$

Stokes problem - variational formulation

$$\begin{cases} \text{find } (\boldsymbol{u}, p) \in \mathbf{V}_{0}(\Omega) \times Q(\Omega) \text{ such that:} \\ \int_{\Omega} \nu \, \boldsymbol{\nabla} \boldsymbol{u} : \boldsymbol{\nabla} \boldsymbol{v} \, \mathrm{d}\Omega + \int_{\Omega} \operatorname{div}(\boldsymbol{v}) \, p \, \mathrm{d}\Omega = \int_{\Omega} \mathbf{f} \cdot \boldsymbol{v} \, \mathrm{d}\Omega \quad \forall \boldsymbol{v} \in \mathbf{V}_{0}(\Omega) \\ \int_{\Omega} \operatorname{div}(\boldsymbol{u}) \, q \, \mathrm{d}\Omega = 0 \qquad \qquad \forall q \in Q(\Omega) \end{cases}$$

$$oldsymbol{V}_0(\Omega) := ig\{oldsymbol{v} \in [H^1(\Omega)]^2 : oldsymbol{v} = 0 ext{ on } \partial\Omegaig\} \ Q(\Omega) := ig\{oldsymbol{q} \in L^2(\Omega) : \int_\Omega q \, \mathrm{d}\Omega = 0ig\}$$

Dep. Math. and App.

F.Dassi et al. Div-Free VEM 3d

Notation for polygons

F.Dassi et al.	Dep. Math. and App.
Div-Free VEM 3d	14/43

Let $E \subset \mathbb{R}^2$, $k \in \mathbb{N} \setminus \{0\}$ and $\alpha = (\alpha_1, \alpha_2)$ be a multi-index, we define the scaled monomials

$$m_{\alpha} := \left(\frac{x - x_E}{h_E}\right)^{\alpha_1} \left(\frac{y - y_E}{h_E}\right)^{\alpha_2}$$

F.Dassi et al.	
Div-Free VEM 3d	

Let $E \subset \mathbb{R}^2$, $k \in \mathbb{N} \setminus \{0\}$ and $\alpha = (\alpha_1, \alpha_2)$ be a multi-index, we define the scaled monomials

$$m_{\alpha} := \left(\frac{x - x_E}{h_E}\right)^{\alpha_1} \left(\frac{y - y_E}{h_E}\right)^{\alpha_2}$$

and the vectorial scaled monomials

$$\boldsymbol{m}_{\alpha}^{1} = \left[egin{array}{c} m_{lpha} \\ 0 \end{array}
ight], \quad \boldsymbol{m}_{lpha}^{2} = \left[egin{array}{c} 0 \\ m_{lpha} \end{array}
ight] \quad ext{and} \quad \boldsymbol{m}^{\perp} = \left[egin{array}{c} m_{(0,1)} \\ -m_{(1,0)} \end{array}
ight]$$

Let $E \subset \mathbb{R}^2$, $k \in \mathbb{N} \setminus \{0\}$ and $\alpha = (\alpha_1, \alpha_2)$ be a multi-index, we define the scaled monomials

$$m_{\alpha} := \left(\frac{x - x_E}{h_E}\right)^{\alpha_1} \left(\frac{y - y_E}{h_E}\right)^{\alpha_2}$$

and the vectorial scaled monomials

$$\boldsymbol{m}_{\boldsymbol{\alpha}}^{1} = \left[\begin{array}{c} m_{\boldsymbol{\alpha}} \\ 0 \end{array}
ight], \quad \boldsymbol{m}_{\boldsymbol{\alpha}}^{2} = \left[\begin{array}{c} 0 \\ m_{\boldsymbol{\alpha}} \end{array}
ight] \quad \text{and} \quad \boldsymbol{m}^{\perp} = \left[\begin{array}{c} m_{(0,1)} \\ -m_{(1,0)} \end{array}
ight]$$

- $\{m_{\alpha}\}$ is a basis of $\mathbb{P}_k(E)$
- $\{\boldsymbol{m}_{\boldsymbol{\alpha}}^{i}\}$ is a basis of $[\mathbb{P}_{k}(E)]^{2}$

Let $E \subset \mathbb{R}^2$, $k \in \mathbb{N} \setminus \{0\}$ and $\alpha = (\alpha_1, \alpha_2)$ be a multi-index, we define the scaled monomials

$$m_{\alpha} := \left(\frac{x - x_E}{h_E}\right)^{\alpha_1} \left(\frac{y - y_E}{h_E}\right)^{\alpha_2}$$

and the vectorial scaled monomials

$$\boldsymbol{m}_{\alpha}^{1} = \begin{bmatrix} m_{\alpha} \\ 0 \end{bmatrix}, \quad \boldsymbol{m}_{\alpha}^{2} = \begin{bmatrix} 0 \\ m_{\alpha} \end{bmatrix} \text{ and } \boldsymbol{m}^{\perp} = \begin{bmatrix} m_{(0,1)} \\ -m_{(1,0)} \end{bmatrix}$$

• $\{m_{\alpha}^{k}\}$ is a basis of $\mathbb{P}_{k}(E)$
• $\{\boldsymbol{m}_{\alpha}^{i}\}$ is a basis of $[\mathbb{P}_{k}(E)]^{2}$

F.Dassi et al.

It is essential the following property

$$\left[\mathbb{P}_{k}(E)\right]^{2} = \nabla \mathbb{P}_{k+1}(E) \oplus \mathbf{x}^{\perp} \mathbb{P}_{k-1}(E)$$

where $\mathbf{x}^{\perp} := (y, -x)^t$

F.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	16/43	

It is essential the following property

$$\left[\mathbb{P}_{k}(E)
ight]^{2}=
abla\mathbb{P}_{k+1}(E)\oplus \mathsf{x}^{\perp}\mathbb{P}_{k-1}(E)$$

where $\mathbf{x}^{\perp} := (y, -x)^t$

Then,

$$orall oldsymbol{q}_k \in \left[\mathbb{P}_k(E)
ight]^2 \qquad \exists ! q_{k+1} \in \mathbb{P}_{k+1}(E) ackslash \mathbb{R}\,, \quad p_{k-1} \in \mathbb{P}_{k-1}(E)$$
 such that

$$\boldsymbol{q}_k = \nabla q_{k+1} + \mathbf{x}^{\perp} p_{k-1}$$

F.Dassi e	et al.	
Div-Free	VEM	3d

It is essential the following property

$$\left[\mathbb{P}_{k}(E)
ight]^{2}=
abla\mathbb{P}_{k+1}(E)\oplus \mathsf{x}^{\perp}\mathbb{P}_{k-1}(E)$$

where $\mathbf{x}^{\perp} := (y, -x)^t$

Then,

$$\forall \boldsymbol{q}_k \in \left[\mathbb{P}_k(E)
ight]^2 \qquad \exists ! \boldsymbol{q}_{k+1} \in \mathbb{P}_{k+1}(E) ackslash \mathbb{R} \,, \quad p_{k-1} \in \mathbb{P}_{k-1}(E)$$

such that

$$\mathbf{q}_{k} = \nabla q_{k+1} + \mathbf{x}^{\perp} p_{k-1}$$

F.Dassi et al.	
Div-Free VEM 3d	

It is essential the following property

$$\left[\mathbb{P}_{k}(E)
ight]^{2}=
abla\mathbb{P}_{k+1}(E)\oplus \mathsf{x}^{\perp}\mathbb{P}_{k-1}(E)$$

where $\mathbf{x}^{\perp} := (y, -x)^t$

Then,

$$orall oldsymbol{q}_k \in \left[\mathbb{P}_k(E)
ight]^2 \qquad \exists ! oldsymbol{q}_{k+1} \in \mathbb{P}_{k+1}(E) ackslash \mathbb{R}\,, \quad p_{k-1} \in \mathbb{P}_{k-1}(E)$$

such that

F.Dassi et al.	
Div-Free VEM 3	ł

It is essential the following property

$$\left[\mathbb{P}_k(E)
ight]^2 =
abla \mathbb{P}_{k+1}(E) \oplus \mathsf{x}^{\perp} \mathbb{P}_{k-1}(E)$$

where $\mathbf{x}^{\perp} := (y, -x)^t$

F.Dassi et al.	
Div-Free VEM 3d	

VEM space definition - the plan

• VEM local spaces

F.Dassi et al.	
Div-Free VEM 3d	

VEM space definition - the plan

- VEM local spaces
- local projection operators

F.Dassi e	et al.	
Div-Free	VEM	3d

F.Da

Div-

VEM space definition - the plan

- VEM local spaces
- local projection operators
- glue spaces

ssi et al.	
Free VEM 3d	

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 : \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2, \, s \in L^2_0(E) \,, \\ &\operatorname{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

F.Dassi et al.	
Div-Free VEM 3d	

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 \, : \, \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2, \, s \in L^2_0(E) \,, \\ &\quad \text{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

 k ≥ 2, sfor k = 1 P. F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani (2014)

$$\begin{aligned} \mathbf{V}_{h}^{k}(E) &:= \left\{ \mathbf{v}_{h} \in [H^{1}(E) \cap C^{0}(E)]^{2} : \mathbf{v}_{L_{e}} \in [\mathbb{P}_{k}(e)]^{2} \ \forall e \in \partial E, \\ &- \mathbf{\Delta} \mathbf{v}_{h} + \nabla s \in [\mathbb{P}_{k-2}(E)]^{2}, s \in L_{0}^{2}(E), \\ &\operatorname{div}(\mathbf{v}_{h}) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

$$\bullet \ k \geq 2, \text{ sfor } k = 1 \text{ P. F. Antonietti, L. Beirão da Veiga, D. Mora and \\ M. \text{ Verani (2014)} \end{aligned}$$

• \boldsymbol{v}_h solves a Stokes-like problem

F.Dassi et al.
Div-Free VEM 3d

1

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 \, : \, \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2, \, s \in L^2_0(E) \,, \\ &\quad \text{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

- k ≥ 2, sfor k = 1 P. F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani (2014)
- **v**_h solves a Stokes-like problem
- modify the condition

$$-\boldsymbol{\Delta v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2$$

F.Dassi et al.

1

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 \, : \, \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2, \, s \in L^2_0(E) \,, \\ &\quad \text{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

- k ≥ 2, sfor k = 1 P. F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani (2014)
- **v**_h solves a Stokes-like problem
- modify the condition

$$-\mathbf{\Delta v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2 = \nabla \mathbb{P}_{k-1}(E) \oplus \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E)$$

$$\begin{aligned} \mathbf{V}_{h}^{k}(E) &:= \left\{ \mathbf{v}_{h} \in [H^{1}(E) \cap C^{0}(E)]^{2} : \mathbf{v}_{h}|_{e} \in [\mathbb{P}_{k}(e)]^{2} \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_{h} + \nabla s \in \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E), \, s \in L^{2}_{0}(E) \\ &\quad \text{div}(\mathbf{v}_{h}) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

- k ≥ 2, sfor k = 1 P. F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani (2014)
- **v**_h solves a Stokes-like problem
- modify the condition

$$-\Delta \mathbf{v}_h + \nabla s \in [\mathbb{P}_{k-2}(E)]^2 = \nabla \mathbb{P}_{k-1}(E) \oplus \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E)$$
$$-\Delta \mathbf{v}_h + \nabla s \in \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E)$$

F.Dassi et al. Div-Free VEM 3d

F.Dassi et al.

Div-Free VEM 3d

Velocity field virtual space - d.o.f.

$$\begin{aligned} \mathbf{V}_{h}^{k}(E) &:= \left\{ \mathbf{v}_{h} \in [H^{1}(E) \cap C^{0}(E)]^{2} : \mathbf{v}_{h}|_{e} \in [\mathbb{P}_{k}(e)]^{2} \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_{h} + \nabla s \in \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E), \, s \in L^{2}_{0}(E) \,, \\ &\text{div}(\mathbf{v}_{h}) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

F.Dassi et al.

Div-Free VEM 3d

Velocity field virtual space - d.o.f.

$$\begin{split} \mathbf{V}_{h}^{k}(E) &:= \left\{ \mathbf{v}_{h} \in [H^{1}(E) \cap C^{0}(E)]^{2} : \mathbf{v}_{h}|_{e} \in [\mathbb{P}_{k}(e)]^{2} \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_{h} + \nabla s \in \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E), \, s \in L^{2}_{0}(E) \,, \\ &\operatorname{div}(\mathbf{v}_{h}) \in \mathbb{P}_{k-1}(E) \right\} \end{split}$$

 vectorial values at the vertices and k - 1 internal nodes

1

Velocity field virtual space - d.o.f.

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 : \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in \mathbf{x}^\perp \mathbb{P}_{k-3}(E), \, s \in L^2_0(E) \,, \\ &\operatorname{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

- vectorial values at the vertices and k - 1 internal nodes
- k(k+1)/2 1 divergence moments $\int_{F} \operatorname{div}(\mathbf{v}_{h}) m_{\alpha} dE$

F.Dassi et al. Div-Free VEM 3d 1

Velocity field virtual space - d.o.f.

$$\begin{aligned} \mathbf{V}_h^k(E) &:= \left\{ \mathbf{v}_h \in [H^1(E) \cap C^0(E)]^2 : \mathbf{v}_h|_e \in [\mathbb{P}_k(e)]^2 \, \forall e \in \partial E \,, \\ &- \mathbf{\Delta} \mathbf{v}_h + \nabla s \in \mathbf{x}^\perp \mathbb{P}_{k-3}(E), \, s \in L^2_0(E) \,, \\ &\operatorname{div}(\mathbf{v}_h) \in \mathbb{P}_{k-1}(E) \right\} \end{aligned}$$

- vectorial values at the vertices and k - 1 internal nodes
- k(k+1)/2 1 divergence moments $\int_E \operatorname{div}(\mathbf{v}_h) m_{\alpha} \, \mathrm{d}E$
- (k-1)(k-2)/2 perp moments $\int_E (\boldsymbol{v}_h \cdot \boldsymbol{m}^\perp) m_{\boldsymbol{\beta}} \, \mathrm{d}E$

F.Dassi et al.

Div-Free VEM 3d

Velocity field virtual space - d.o.f.

$$\mathbf{V}_{h}^{k}(E) := \left\{ \mathbf{v}_{h} \in [H^{1}(E) \cap C^{0}(E)]^{2} \quad \mathbf{v}_{s} \in [\mathbb{P}_{k}(e)]^{2} \quad \forall e \in \partial E, \\ + \nabla s \in \mathbf{x}^{\perp} \mathbb{P}_{k-3}(E), \ s \in L_{0}^{2}(E), \\ \mathbb{P}_{k-1}(E) \right\}$$
• vectorial values at the
and $k-1$ internal n
• $k(k+1)/2 - 1$ di Not only
 \int_{E} polynomials are
in $\mathbf{V}_{h}^{k}(E)$
• $(k-1)(k-1)$

Dep. Math. and App.

$$\begin{cases} \int_{E} \boldsymbol{\nabla} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) : \boldsymbol{\nabla} \boldsymbol{p}_{k} dE = 0 \quad \forall \boldsymbol{p}_{k} \in [\mathbb{P}_{k}(E)]^{2} \\ \int_{\partial E} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) \cdot \boldsymbol{p}_{0} de = 0 \quad \forall \boldsymbol{p}_{0} \in [\mathbb{P}_{0}(E)]^{2} \end{cases}$$

$$\begin{cases} \int_{E} \boldsymbol{\nabla} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) : \boldsymbol{\nabla} \boldsymbol{p}_{k} dE = 0 \quad \forall \boldsymbol{p}_{k} \in [\mathbb{P}_{k}(E)]^{2} \\ \int_{\partial E} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) \cdot \boldsymbol{p}_{0} de = 0 \quad \forall \boldsymbol{p}_{0} \in [\mathbb{P}_{0}(E)]^{2} \end{cases}$$

•
$$\mathbb{M}_k(E) := \{\boldsymbol{m}_i\}_{i=1}^n$$

•
$$\mathbb{M}_0(E) := \{ m_1, m_2 \}$$

$$\begin{cases} \int_{E} \boldsymbol{\nabla}(\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) : \boldsymbol{\nabla} \boldsymbol{p}_{k} \, \mathrm{d} E = 0 \quad \forall \boldsymbol{p}_{k} \in [\mathbb{P}_{k}(E)]^{2} \\ \int_{\partial E} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) \cdot \boldsymbol{p}_{0} \, \mathrm{d} e = 0 \quad \forall \boldsymbol{p}_{0} \in [\mathbb{P}_{0}(E)]^{2} \end{cases}$$

•
$$\mathbb{M}_k(E) := \{\boldsymbol{m}_i\}_{i=1}^n$$

•
$$\mathbb{M}_0(E) := \{ m_1, m_2 \}$$

•
$$\Pi_k^{\nabla} \boldsymbol{v}_h := c_0 \boldsymbol{m}_1 + c_1 \boldsymbol{m}_1 + \ldots + c_n \boldsymbol{m}_n$$

$$\begin{cases} \int_{E} \boldsymbol{\nabla} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) : \boldsymbol{\nabla} \boldsymbol{p}_{k} \, \mathrm{d} E = 0 \quad \forall \boldsymbol{p}_{k} \in [\mathbb{P}_{k}(E)]^{2} \\ \int_{\partial E} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) \cdot \boldsymbol{p}_{0} \, \mathrm{d} e = 0 \quad \forall \boldsymbol{p}_{0} \in [\mathbb{P}_{0}(E)]^{2} \end{cases}$$

•
$$\mathbb{M}_k(E) := \{\boldsymbol{m}_i\}_{i=1}^n$$

•
$$\mathbb{M}_0(E) := \{ m_1, m_2 \}$$

•
$$\Pi_k^{\nabla} \boldsymbol{v}_h := c_0 \boldsymbol{m}_1 + c_1 \boldsymbol{m}_1 + \ldots + c_n \boldsymbol{m}_n$$

• conditions according to $\mathbb{M}_k(E)$ and $\mathbb{M}_0(E)$

$$\int_{E} \nabla(\mathbf{v}_{h}) \cdot \Pi_{k}^{\nabla} \mathbf{v}_{h} \cdot \nabla \mathbf{p}_{k} \, \mathrm{d}E = 0 \quad \forall \mathbf{p}_{k} \in [\mathbb{P}_{k}(E)]^{2}$$

$$\int_{\partial E} (\mathbf{v}_{h}) - \Pi_{k}^{\nabla} \mathbf{v}_{h} \cdot \mathbf{p}_{0} \, \mathrm{d}e = 0 \quad \forall \mathbf{p}_{0} \in [\mathbb{P}_{0}(E)]^{2}$$

•
$$\mathbb{M}_k(E) := \{\boldsymbol{m}_i\}_{i=1}^n$$

•
$$\mathbb{M}_0(E) := \{ m_1, m_2 \}$$

•
$$\Pi_k^{\nabla} \boldsymbol{v}_h := c_0 \boldsymbol{m}_1 + c_1 \boldsymbol{m}_1 + \ldots +$$

• conditions according to
$$\mathbb{M}_k(E)$$

$$\int_{E} \boldsymbol{\nabla} (\boldsymbol{v}_h - \boldsymbol{\Pi}_k^{\nabla} \boldsymbol{v}_h) : \boldsymbol{\nabla} \boldsymbol{m}_i \, \mathrm{d} \boldsymbol{E} = \boldsymbol{0}$$

VFM snaces

$$\int_{E} \boldsymbol{\nabla} (\boldsymbol{v}_{h} - \boldsymbol{\Pi}_{k}^{\nabla} \boldsymbol{v}_{h}) : \boldsymbol{\nabla} \boldsymbol{m}_{i} \, \mathrm{d} \boldsymbol{E} = 0$$
$$\sum_{j=1}^{n} c_{j} \int_{E} \boldsymbol{\nabla} \boldsymbol{m}_{j} : \boldsymbol{\nabla} \boldsymbol{m}_{i} \, \mathrm{d} \boldsymbol{E} = \int_{E} \boldsymbol{\nabla} \boldsymbol{v}_{h} : \boldsymbol{\nabla} \boldsymbol{m}_{i} \, \mathrm{d} \boldsymbol{E}$$

$$\int_{E} \nabla (\boldsymbol{v}_{h} - \Pi_{k}^{\nabla} \boldsymbol{v}_{h}) : \nabla \boldsymbol{m}_{i} dE = 0$$
$$\sum_{j=1}^{n} c_{j} \int_{E} \nabla \boldsymbol{m}_{j} : \nabla \boldsymbol{m}_{i} dE = \int_{E} \nabla \boldsymbol{v}_{h} : \nabla \boldsymbol{m}_{i} dE$$

Focus on the virtual part

$$\int_{\boldsymbol{E}} \boldsymbol{\nabla} \boldsymbol{v}_h : \boldsymbol{\nabla} \boldsymbol{m}_i \, \mathrm{d} \boldsymbol{E}$$

$$\int_{E} \nabla (\boldsymbol{v}_{h} - \Pi_{k}^{\nabla} \boldsymbol{v}_{h}) : \nabla \boldsymbol{m}_{i} dE = 0$$
$$\sum_{j=1}^{n} c_{j} \int_{E} \nabla \boldsymbol{m}_{j} : \nabla \boldsymbol{m}_{i} dE = \int_{E} \nabla \boldsymbol{v}_{h} : \nabla \boldsymbol{m}_{i} dE$$

Focus on the virtual part

$$\int_{E} \boldsymbol{\nabla} \boldsymbol{v}_{h} : \boldsymbol{\nabla} \boldsymbol{m}_{i} \, \mathrm{d} E = -\int_{E} \boldsymbol{v}_{h} \cdot \boldsymbol{\Delta} \boldsymbol{m}_{i} \, \mathrm{d} E + \int_{\partial E} \boldsymbol{v}_{h} \cdot (\boldsymbol{\nabla} \boldsymbol{m}_{i} \, \mathbf{n}) \, \mathrm{d} e$$

Dep. Math. and App.

$$\int_{E} \nabla (\boldsymbol{v}_{h} - \Pi_{k}^{\nabla} \boldsymbol{v}_{h}) : \nabla \boldsymbol{m}_{i} dE = 0$$
$$\sum_{j=1}^{n} c_{j} \int_{E} \nabla \boldsymbol{m}_{j} : \nabla \boldsymbol{m}_{i} dE = \int_{E} \nabla \boldsymbol{v}_{h} : \nabla \boldsymbol{m}_{i} dE$$

Focus on the virtual part

$$\int_{E} \nabla \mathbf{v}_{h} : \nabla \mathbf{m}_{i} \, \mathrm{d}E = -\int_{E} \mathbf{v}_{h} \cdot \mathbf{\Delta}\mathbf{m}_{i} \, \mathrm{d}E + \int_{\partial E} \mathbf{v}_{h} \cdot (\nabla \mathbf{m}_{i} \, \mathbf{n}) \, \mathrm{d}e$$
$$= -\int_{E} \mathbf{v}_{h} \cdot \mathbf{\Delta}\mathbf{m}_{i} \, \mathrm{d}E + \sum_{e \in \partial E} \int_{e} \mathbf{v}_{h} \cdot (\nabla \mathbf{m}_{i} \, \mathbf{n}_{e}) \, \mathrm{d}e$$

F.Dassi et al. Div-Free VEM 3d

$$\int_{E} \nabla (\mathbf{v}_{h} - \Pi_{k}^{\nabla} \mathbf{v}_{h}) : \nabla \mathbf{m}_{i} dE = 0$$

$$\sum_{j=1}^{n} c_{j} \int_{E} \nabla \mathbf{m}_{j} : \nabla \mathbf{m}_{i} dE = \int_{E} \nabla \mathbf{v}_{h} : \nabla \mathbf{m}_{i} dE$$
Focus on the virtual part
$$\int_{E} \nabla \mathbf{v}_{h} : \nabla \mathbf{m}_{i} dE = -\int_{E} \mathbf{v}_{h} \cdot \Delta \mathbf{m}_{i} dE + \int_{\partial L} \underbrace{\mathbf{v}_{h}^{k}(E)}_{\forall e \in \partial E} e^{(\mathbf{p}_{h}(e))^{2}} de$$

$$= -\int_{E} \mathbf{v}_{h} \cdot \Delta \mathbf{m}_{i} dE + \sum_{e \in \partial E} \int_{e} \mathbf{v}_{h} \cdot (\nabla \mathbf{m}_{i} \mathbf{n}_{e}) de$$

F.Dassi et al. Div-Free VEM 3d

$$\int_{E} \nabla (\mathbf{v}_{h} - \Pi_{k}^{\nabla} \mathbf{v}_{h}) : \nabla \mathbf{m}_{i} dE = 0$$

$$\sum_{j=1}^{n} c_{j} \int_{E} \nabla \mathbf{m}_{j} : \nabla \mathbf{m}_{i} dE = \int_{E} \nabla \mathbf{v}_{h} : \nabla \mathbf{m}_{i} dE$$
Focus on the virtual part
$$\int_{E} \nabla \mathbf{v}_{h} : \nabla \mathbf{m}_{i} dE = -\int_{E} \mathbf{v}_{h} \cdot \Delta \mathbf{m}_{i} dE + \int_{\partial E} \underbrace{\nabla \mathbf{v}_{h}^{k}(E)}_{\forall h \in OE} (\nabla \mathbf{v}_{h} \cdot \nabla \mathbf{m}_{i} \mathbf{n}_{e}) de$$

$$= -\int_{E} \mathbf{v}_{h} \cdot \Delta \mathbf{m}_{i} dE + \sum_{e \in \partial E} \int_{e} \mathbf{v}_{h} \cdot (\nabla \mathbf{m}_{i} \mathbf{n}_{e}) de$$

F.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	21/43	

$$-\int_{E} \boldsymbol{v}_{h} \cdot \boldsymbol{\Delta} \boldsymbol{m}_{i} \, \mathrm{d} E$$

F.Dassi et al.	
Div-Free VEM 3d	

$$-\int_{E} \boldsymbol{v}_{h} \cdot \boldsymbol{\Delta} \boldsymbol{m}_{i} \,\mathrm{d} E$$

 $\Delta m_i = c_{\alpha} m_{\alpha} + c_{\beta} m_{\beta} + c_{\delta} m_{\delta} + c_{\gamma} m_{\gamma}$

$$-\int_{\boldsymbol{E}}\boldsymbol{v}_{h}\cdot\boldsymbol{\Delta}\boldsymbol{m}_{i}\,\mathrm{d}\boldsymbol{E}$$

 $\Delta m_i = c_{\alpha} m_{\alpha} + c_{\beta} m_{\beta} + c_{\delta} m_{\delta} + c_{\gamma} m_{\gamma}$

 $\boldsymbol{m}_{\boldsymbol{\alpha}}, \boldsymbol{m}_{\boldsymbol{\beta}}, \boldsymbol{m}_{\boldsymbol{\delta}}, \boldsymbol{m}_{\boldsymbol{\gamma}} \in \mathbb{P}_{k-2}(E)$

$$-\int_{\boldsymbol{E}}\boldsymbol{v}_{h}\cdot\boldsymbol{\Delta}\boldsymbol{m}_{i}\,\mathrm{d}\boldsymbol{E}$$

$$\Delta m_i = c_{\alpha} m_{\alpha} + c_{\beta} m_{\beta} + c_{\delta} m_{\delta} + c_{\gamma} m_{\gamma}$$

$$\boldsymbol{m}_{\boldsymbol{\alpha}}, \boldsymbol{m}_{\boldsymbol{\beta}}, \boldsymbol{m}_{\boldsymbol{\delta}}, \boldsymbol{m}_{\boldsymbol{\gamma}} \in \mathbb{P}_{k-2}(E)$$

$$oldsymbol{m}_{oldsymbol{lpha}} = c^{oldsymbol{lpha}}_{oldsymbol{\zeta}}
abla m_{oldsymbol{\zeta}} + c^{oldsymbol{lpha}}_{oldsymbol{\eta}} m^{oldsymbol{\perp}}_{oldsymbol{m}_{oldsymbol{\lambda}}} m_{oldsymbol{\eta}} \ m_{oldsymbol{\zeta}} \in \mathbb{P}_{k-1}(E) ext{ and } m_{oldsymbol{\eta}} \in \mathbb{P}_{k-3}(E)$$

Dep. Math. and App.

F.Dassi et al. Div-Free VEM 3d

 $\int_{\boldsymbol{E}} \boldsymbol{v}_h \cdot \boldsymbol{m}_{\boldsymbol{\alpha}} \, \mathrm{d}\boldsymbol{E}$

$$\int_{E} \boldsymbol{v}_{h} \cdot \boldsymbol{m}_{\alpha} \, \mathrm{d}E = \int_{E} \boldsymbol{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \boldsymbol{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \mathbf{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$
$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \cdot \nabla m_{\zeta} \, \mathrm{d}E + c_{\eta}^{\alpha} \int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\eta} \, \mathrm{d}E$$

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c \left(\int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\beta} \, \mathrm{d}E \right) \right) \, \mathrm{d}E$$
$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \left(\int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\beta} \, \mathrm{d}E \right) \, \mathrm{d}E$$

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \mathbf{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$
$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \cdot \nabla m_{\zeta} \, \mathrm{d}E + c_{\eta}^{\alpha} \int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\eta} \, \mathrm{d}E$$
$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) m_{\zeta} \, \mathrm{d}e + \dots$$

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \mathbf{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$

$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \cdot \nabla m_{\zeta} \, \mathrm{d}E + c_{\eta}^{\alpha} \int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\eta} \, \mathrm{d}E$$

$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) m_{\zeta} \, \mathrm{d}e + \dots$$

$$\begin{bmatrix} \mathbf{v}_{h}^{k}(E) \\ \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\alpha} \, \mathrm{d}E \end{bmatrix}$$

F.Dassi et al.	Dep. Math. and App.
Div-Free VEM 3d	23/43

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \mathbf{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$

$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \cdot \nabla m_{\zeta} \, \mathrm{d}E + c_{\eta}^{\alpha} \int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\eta} \, \mathrm{d}E$$

$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) m_{\zeta} \, \mathrm{d}e + \dots$$

$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \sum_{e \in \partial E} (\mathbf{v}_{h} \cdot \mathbf{n}_{e}) m_{\zeta} \, \mathrm{d}e + \dots$$

Dep. Math. and App.

$$\int_{E} \mathbf{v}_{h} \cdot \mathbf{m}_{\alpha} \, \mathrm{d}E = \int_{E} \mathbf{v}_{h} \cdot (c_{\zeta}^{\alpha} \nabla m_{\zeta} + c_{\eta}^{\alpha} \mathbf{m}^{\perp} m_{\eta}) \, \mathrm{d}E$$

$$= c_{\zeta}^{\alpha} \int_{E} \mathbf{v}_{h} \cdot \nabla m_{\zeta} \, \mathrm{d}E + c_{\eta}^{\alpha} \int_{E} (\mathbf{v}_{h} \cdot \mathbf{m}^{\perp}) m_{\eta} \, \mathrm{d}E$$

$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) m_{\zeta} \, \mathrm{d}e + \dots$$

$$= -c_{\zeta}^{\alpha} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{\zeta} \, \mathrm{d}E + c_{\zeta}^{\alpha} \sum_{e \in \partial E} (\mathbf{v}_{h} \cdot \mathbf{n}_{e}) m_{\zeta} \, \mathrm{d}e + \dots$$

$$\mathbf{v}_{h|e}^{k} \in [\mathbb{P}_{k}(e)]^{2} \quad \forall e \in \partial E$$

Dep. Math. and App.

F.Dassi et al. Div-Free VEM 3d

$$Q_h^{k-1}(E) := \{q_h : q_h \in \mathbb{P}_{k-1}(E)\}$$

F.Dassi et al.	
Div-Free VEM 3d	

$$Q_h^{k-1}(E) := \{q_h : q_h \in \mathbb{P}_{k-1}(E)\}$$

• no VEM approximation

F.Dassi et al.	
Div-Free VEM 3d	

$$Q_h^{k-1}(E) := \{q_h : q_h \in \mathbb{P}_{k-1}(E)\}$$

- no VEM approximation
- no projection

F.Dassi et al.	
Div-Free VEM 3d	

$$Q_h^{k-1}(E) := \{q_h : q_h \in \mathbb{P}_{k-1}(E)\}$$

- no VEM approximation
- no projection
- k(k+1)/2 moments

$$\int_E q_h \, m_{\boldsymbol{\alpha}} \, \mathrm{d} E$$

Consider a polyhedral decomposition Ω_h of Ω , then we solve:

$$\begin{array}{l} \left[\begin{array}{l} \text{find } (\boldsymbol{u}_h, p_h) \in \boldsymbol{\mathsf{V}}_h^k \times Q_h^{k-1} \text{ such that} \\ a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + \int_{\Omega_h} \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}\Omega_h = \int_{\Omega_h} \mathbf{f}_h \cdot \boldsymbol{v}_h \, \mathrm{d}\Omega_h \quad \forall \boldsymbol{v}_h \in \boldsymbol{\mathsf{V}}_{h,0}^k \\ \int_{\Omega_h} \operatorname{div}(\boldsymbol{u}_h) q_h \, \mathrm{d}\Omega_h = 0 \qquad \qquad \forall q_h \in Q_h^{k-1} \end{array} \right]$$

1.00351 6	Lai.
Div-Free	VEM 3d

E Dassi

Consider a polyhedral decomposition Ω_h of Ω , then we solve:

$$\begin{cases} \text{find } (\boldsymbol{u}_h, p_h) \in \boldsymbol{V}_h^k \times Q_h^{k-1} \text{ such that} \\ a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + \int_{\Omega_h} \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}\Omega_h = \int_{\Omega_h} \mathbf{f}_h \cdot \boldsymbol{v}_h \, \mathrm{d}\Omega_h \quad \forall \boldsymbol{v}_h \in \boldsymbol{V}_{h,0}^k \\ \int_{\Omega_h} \operatorname{div}(\boldsymbol{u}_h) q_h \, \mathrm{d}\Omega_h = 0 \qquad \qquad \forall q_h \in Q_h^{k-1} \end{cases}$$

where

• we define from Π_k^{∇} and dofs

$$a_h(\cdot,\cdot) \approx \int_{\Omega} \nu \nabla \boldsymbol{u} : \nabla \boldsymbol{v} \,\mathrm{d}\Omega$$

F.Dassi et al.	
Div-Free VEM	3

Consider a polyhedral decomposition Ω_h of Ω , then we solve:

$$\begin{cases} \text{find } (\boldsymbol{u}_h, p_h) \in \boldsymbol{V}_h^k \times Q_h^{k-1} \text{ such that} \\ a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + \int_{\Omega_h} \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}\Omega_h = \int_{\Omega_h} \mathbf{f}_h \cdot \boldsymbol{v}_h \, \mathrm{d}\Omega_h \quad \forall \boldsymbol{v}_h \in \boldsymbol{V}_{h,0}^k \\ \int_{\Omega_h} \operatorname{div}(\boldsymbol{u}_h) q_h \, \mathrm{d}\Omega_h = 0 \qquad \qquad \forall q_h \in Q_h^{k-1} \end{cases}$$

where

F.Dassi et al.

Div-Free VEM 3d

• we define from Π_k^{∇} and dofs

$$a_h(\cdot,\cdot) \approx \int_{\Omega} \nu \nabla \boldsymbol{u} : \nabla \boldsymbol{v} \,\mathrm{d}\Omega$$

•
$$\mathbf{f}_h$$
 is a proper L^2 projection of \mathbf{f}
Definiton of $a_h(\cdot, \cdot)$

Follow a standard VEM approach

$$a_h(\boldsymbol{v}_h, \, \boldsymbol{w}_h) = \sum_{E \in \Omega_h} a_{h,E}(\boldsymbol{v}_h, \, \boldsymbol{w}_h)$$

F.Dassi et al.	
Div-Free VEM 3d	

Definiton of $a_h(\cdot, \cdot)$

Follow a standard VEM approach

$$a_h(\boldsymbol{v}_h, \, \boldsymbol{w}_h) = \sum_{E \in \Omega_h} a_{h,E}(\boldsymbol{v}_h, \, \boldsymbol{w}_h)$$

where

$$egin{aligned} & a_{h,E}(oldsymbol{v}_h,oldsymbol{w}_h) & := & \int_E oldsymbol{
aligned} (\Pi_k^
abla oldsymbol{w}_h) : oldsymbol{
abla} (\Pi_k^
abla oldsymbol{w}_h) \, \mathrm{d}E \ & + s_E(oldsymbol{v}_h - \Pi_k^
abla oldsymbol{v}_h,oldsymbol{w}_h - \Pi_k^
abla oldsymbol{w}_h) \end{aligned}$$

F.Dassi et al. Div-Free VEM 3d

Definiton of $a_h(\cdot, \cdot)$

Follow a standard VEM approach

where

$$a_{h,E}(\mathbf{v}_{h}, \mathbf{w}_{h}) = \sum_{E \in \Omega_{h}} a_{h,E}(\mathbf{v}_{h}, \mathbf{w}_{h})$$

$$\mathbf{consistency}$$

$$a_{h,E}(\mathbf{v}_{h}, \mathbf{w}_{h}) : \mathbf{\nabla}(\Pi_{k}^{\nabla} \mathbf{v}_{h}) : \mathbf{\nabla}(\Pi_{k}^{\nabla} \mathbf{w}_{h}) dE$$

$$+ s_{E}(\mathbf{v}_{h} - \Pi_{k}^{\nabla} \mathbf{v}_{h}, \mathbf{w}_{h} - \Pi_{k}^{\nabla} \mathbf{w}_{h})$$

Dep.	Math.	and	App.
------	-------	-----	------

Definiton of $a_h(\cdot, \cdot)$

Follow a standard VEM approach

$$a_h(\boldsymbol{v}_h, \, \boldsymbol{w}_h) = \sum_{E \in \Omega_h} a_{h,E}(\boldsymbol{v}_h, \, \boldsymbol{w}_h)$$

where

$$a_{h,E}(\boldsymbol{v}_h, \boldsymbol{w}_h) := \int_E \nabla (\Pi_k^{\nabla} \boldsymbol{v}_h) : \nabla (\Pi_k^{\nabla} \boldsymbol{w}_h) dE + s_E(\boldsymbol{v}_h - \Pi_k^{\nabla} \boldsymbol{v}_h, \boldsymbol{w}_h - \Pi_k^{\nabla} \boldsymbol{w}_h)$$
stability

F.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	27/43	

$$\int_{\Omega_h} \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}\Omega_h$$

$$\int_{\Omega_h} \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}\Omega_h = \sum_{E \in \Omega_h} \int_E \operatorname{div}(\boldsymbol{v}_h) p_h \, \mathrm{d}E$$

$$\int_{\Omega_{h}} \operatorname{div}(\boldsymbol{v}_{h}) p_{h} \, \mathrm{d}\Omega_{h} = \sum_{E \in \Omega_{h}} \int_{E} \operatorname{div}(\boldsymbol{v}_{h}) p_{h} \, \mathrm{d}E$$
there is no
approximation

F.Dassi e	t al.	
Div-Free	VEM	3d

$$\int_{\Omega_{h}} \operatorname{div}(\mathbf{v}_{h}) p_{h} d\Omega_{h} = \sum_{E \in \Omega_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE$$
there is no approximation

$$\int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE = p_{h} \int_{E} \operatorname{div}(\mathbf{v}_{h}) dE$$

$$= p_{h} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) de$$

$$= p_{h} \sum_{e \in \partial E} \int_{e} (\mathbf{v}_{h} \cdot \mathbf{n}_{e}) de$$

Dep.	Math.	and	App.
------	-------	-----	------

F.Dassi et al. Div-Free VEM 3d

$$\int_{\Omega_{h}} \operatorname{div}(\mathbf{v}_{h}) p_{h} d\Omega_{h} = \sum_{E \in \Omega_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE$$
there is no approximation

$$\int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE = p_{h} \int_{E} \operatorname{div}(\mathbf{v}_{h}) dE$$

$$= p_{h} \int_{\partial E} (\mathbf{v}_{h} \cdot \mathbf{n}) de$$

$$\mathbf{v}_{h|e}^{k}(E) = p_{h} \sum_{e \in \partial E} \int_{e} (\mathbf{v}_{h} \cdot \mathbf{n}_{e}) de$$

$$\mathbf{v}_{h|e}^{k}(E) = p_{h} \sum_{e \in \partial E} \int_{e} (\mathbf{v}_{h} \cdot \mathbf{n}_{e}) de$$

Dep.	Math.	and	Арр
------	-------	-----	-----

$$\int_{\Omega_{h}} \operatorname{div}(\mathbf{v}_{h}) p_{h} d\Omega_{h} = \sum_{E \in \Omega_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE$$
if $p_{h} \in \mathbb{P}_{k-1}(E) \setminus \mathbb{R}$

$$\int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE = \sum_{s=1}^{n} c_{s}^{p_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{s} dE$$

$$\int_{\Omega_{h}} \operatorname{div}(\mathbf{v}_{h}) p_{h} d\Omega_{h} = \sum_{E \in \Omega_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE$$
there is no approximation

$$\int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE = \sum_{s=1}^{n} c_{s}^{p_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{s} dE$$

$$\int_{E} \operatorname{div}(\mathbf{v}_{h}) p_{h} dE = \sum_{s=1}^{n} c_{s}^{p_{h}} \int_{E} \operatorname{div}(\mathbf{v}_{h}) m_{s} dE$$

Dep. Math. and App.

F.Dassi et al.

Numerical examples

Dep. Math. and App.

D)iv-	Fre	e V	ΈM	3d	

Error norms

• *H*¹–velocity error:

$$e_{H^1}^{\boldsymbol{u}} := \sqrt{\sum_{E \in \Omega_h} \left| \left| \nabla \boldsymbol{u} - \boldsymbol{\Pi}_{k-1}^0 \nabla \boldsymbol{u}_h \right| \right|_{L^2(E)}^2} \sim h^k$$

• L²-pressure error:

$$e_{L^2}^p := \sqrt{\sum_{E \in \Omega_h} \left| \left| p - p_h \right| \right|_{L^2(E)}^2} \sim h^k$$

"Divergence free Virtual Elements for the Stokes problem on polygonal meshes" L. Beirão da Veiga, C. Lovadina, and G.Vacca (2017)

F.Dassi et al.	Dep.	Math. and App.
Div-Free VEM 3d	31/43	

Example 1: Convergence analysis for Stokes

Let us consider a Stokes problem

$$\begin{cases}
-\nu \, \Delta \boldsymbol{u} - \nabla \boldsymbol{p} &= \mathbf{f} \quad \text{in } \Omega \\
\text{div}(\boldsymbol{u}) &= 0 \quad \text{in } \Omega \\
\boldsymbol{u} &= \mathbf{r} \quad \text{on } \partial \Omega
\end{cases}$$

where the exact solution is

$$\boldsymbol{u}(x, y, z) := \begin{pmatrix} \sin(\pi x) \cos(\pi y) \cos(\pi z) \\ \cos(\pi x) \sin(\pi y) \cos(\pi z) \\ -2\cos(\pi x) \cos(\pi y) \sin(\pi z) \end{pmatrix}$$

and

$$p(x, y, z) := -\pi \cos(\pi x) \cos(\pi y) \cos(\pi z).$$

Numerical examples

Example 1: Convergence analysis for Stokes

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	[Dep. Math.	and App.
Div-Free VEM 3d	33/43		

Example 2: Convergence analysis for Navier-Stokes

Let us consider a Navier-Stokes problem

$$\begin{cases} -\nu \, \Delta \boldsymbol{u} + \boldsymbol{u} \nabla \boldsymbol{u} - \nabla \boldsymbol{p} &= \mathbf{f} \quad \text{in } \Omega \\ \text{div}(\boldsymbol{u}) &= 0 \quad \text{in } \Omega \\ \boldsymbol{u} &= \mathbf{r} \quad \text{on } \partial \Omega \end{cases}$$

where the exact solution is

$$\boldsymbol{u}(x, y, z) := \begin{pmatrix} \sin(\pi x) \cos(\pi y) \cos(\pi z) \\ \cos(\pi x) \sin(\pi y) \cos(\pi z) \\ -2\cos(\pi x) \cos(\pi y) \sin(\pi z) \end{pmatrix}$$

and

$$p(x, y, z) := \sin(2\pi x) \sin(2\pi y) \sin(2\pi z).$$

F.Dassi et al.	
Div-Free VEM 3d	

Numerical examples

Example 2: Convergence analysis for Navier-Stokes

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	Dep. Math. and App
Div-Free VEM 3d	35/43

Example 3: Benchmark problems

Let us consider a Stokes problem, we have the following estimate

$$|\boldsymbol{u} - \boldsymbol{u}_h|_1 \lesssim h^s \mathcal{F}(\boldsymbol{u}; \nu, \gamma) + h^{s+2} \mathcal{H}(\mathbf{f}; \nu)$$

for suitable functions \mathcal{F} , \mathcal{H} , \mathcal{K} independent of h.

Example 3: Benchmark problems

Let us consider a Stokes problem, we have the following estimate

$$|oldsymbol{u}-oldsymbol{u}_h|_1\lesssim\ h^{s}\,\mathcal{F}(oldsymbol{u};\,
u,\gamma)+\ h^{s+2}\,\mathcal{H}(oldsymbol{f};
u)$$

for suitable functions $\mathcal{F}, \mathcal{H}, \mathcal{K}$ independent

F.Dassi et al.		Dep. Math.	and App
Div-Free VEM 3d	36/43		

Example 3: Benchmark problems

We consider two problems

$$\boldsymbol{u}(x, y, z) := \begin{pmatrix} k \times z^{k-1} \\ k \cdot y \cdot z^{k-1} \\ (2-k) \cdot x^{k} + (2-k) \cdot y^{k} - 2 \cdot z^{k} \end{pmatrix},$$

and

$$p_1(x, y, z) := x^k y + y^k z + z^k x - \frac{3}{2(k+1)},$$

or

$$p_2(x, y, z) := \sin(2\pi x) \sin(2\pi y) \sin(2\pi z).$$

F.Dassi et al. Div-Free VEM 3d

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	Dep. Math. and App.	
Div-Free VEM 3d	38/43	

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

.Dassi et al.		Dep. Math. and App.
Div-Free VEM 3d	38/43	

F.D

Example 3: Benchmark problem, case p_1

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

assi et al.	Dep. Mat	h. and Ap
Free VEM 3d	38/43	

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	Dep. Math. and App.
Div-Free VEM 3d	39/43

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	Dep. M	ath. and App.
Div-Free VEM 3d	39/43	

"The Stokes complex for Virtual Elements in three dimensions" L. Beirão da Veiga, F, Dassi, and G.Vacca submitted

F.Dassi et al.	Dep. Math. and App
Div-Free VEM 3d	39/43

We presented Virtual Element approach

We presented Virtual Element approach

• for Stokes and Navier-Stokes problems 2d/3d

F.Dassi et al.		Dep. Math. and Ap
Div-Free VEM 3d	41/43	

We presented Virtual Element approach

- for Stokes and Navier-Stokes problems 2d/3d
- div-free property

$$|oldsymbol{u}-oldsymbol{u}_h|_1\lesssim\ h^{s}\,\mathcal{F}(oldsymbol{u};\,
u,\gamma)+\ h^{s+2}\,\mathcal{H}(oldsymbol{f};
u)$$

F.Dassi et al.	
Div-Free VEM 3d	

Related Pressure Robust and/or Div-free works

L. Beirão da Veiga, C. Lovadina and G. Vacca, Virtual Elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal, 2018;

- L. Beirão da Veiga, F. Dassi and G. Vacca, The Stokes complex for Virtual Elements in three dimensions, Math. Models Methods Appl. Sci., 2020;
- G. Wang, L. Mu, Y. Wang and Y. He, A pressure-robust virtual element method for the Stokes problem, Comput. Methods Appl. Mech. Eng., 2021;
- L. Beirão da Veiga, F. Dassi, D. A. Di Pietro and J. Droniou, Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes, Comput. Methods Appl. Mech. Eng., 2022;
- D. Frerichs and C. Merdon, Divergence-preserving reconstruction on polygons and a really pressure robust virtual element method for the Stokes problem, IMA J. Numer. Anal., 2022;

